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Distributed Optimization of Multi-Agent Systems
over Uniform Hypergraphs
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Abstract— Distributed optimization of multi-agent sys-
tems over uniform hypergraphs is considered in this pa-
per. Given a global objective function in advance, an ideal
design method of utility functions for each agent is put
forward to convert a multi-agent system into a budget-
balanced potential network game (BBPNG) with the pre-
assigned objective function as its potential function. First,
the verification of BBPNGs is simplified to verify whether
its fundamental network game is a budget-balanced po-
tential game (BBPG). Next, the algebraic and geometric
expressions of BBPGs are obtained, respectively. Finally, a
necessary and sufficient condition is given about the utility
design.

Index Terms— Potential network game, budget balance
condition, Nash equilibrium, semi-tensor product of matri-
ces.

I. INTRODUCTION

ONE key feature in the optimization problem is the
existence of a system objective function that the system

designer seeks to optimize, such as the resource allocation
problem [12], the sensor coverage problem [16], etc. Dis-
tributed algorithms aim to optimize this function effectively
through the local information exchange between individuals
with the help of the network [1], [3]. Due to the rationality of
individuals, the final state of the system is often determined
by the mutual influence and interaction between individuals’
strategies, so it is necessary to design individuals’ optimal
strategies to achieve the system optimization. Finite non-
cooperative game precisely studies the strategy selection and
optimization among individuals with conflicting interaction
relation, so it plays an important role in establishing the anal-
ysis model of the system optimization [14], [15]. Particularly,
finite potential games are favored because of the existence
and the convergence of Nash equilibria [13] since Nash
equilibria are used to correspond to the system’s equilibrium
behaviors, i.e., the states that improve the system performance.
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Potential based optimization becomes a promising method for
the system optimization [7], [9].

After modeling the system as a finite game, each individual
will be assigned a utility function. Since an individual’s choice
of the strategy is based on the utility obtained under the strat-
egy, it is reasonable to induce individuals to choose optimal
strategies by designing proper utility functions. Generally, the
system objective function equals to the sum of individuals’
utility functions in most all distributed optimization problems.
For example, in the study of the control (or influence) of the
social system, it describes the phenomenon that there are costs
or benefits that need to be fully absorbed by participants [12].

[6] puts forward a solution framework for the system
optimization which takes potential games as the interface of
two separate design steps, one of which is the utility design
aiming to convert the system into a finite potential game.
However, there may be multiple Nash equilibria, not all of
which can improve the system performance. A new technology
for the utility design is proposed in this paper, which takes
the optimality of Nash equilibria into account. Given that
the optimal value point of the potential function is also a
Nash equilibrium, which is called the effective (potential-
maximizing\minimizing) Nash equilibrium, the system objec-
tive function is further taken as the potential function. In this
way, the optimal equilibrium behavior of the system naturally
corresponds to the effective Nash equilibrium of the finite
potential game, and then, its existence can be guaranteed.

This paper studies the optimization of multi-agent systems
over uniform hypergraphs via potential game approach. In
terms of the system optimization, most researches are carried
out on network graphs based on binary relationships [11].
However, for high-order interactions in social and commu-
nication networks, only the hypergraph can describe them
well. Particularly, the uniform hypergraph is an important
part of the hypergraph theory [2]. So far, the research under
hypergraphs has not received much attention. In terms of the
finite potential game theory, there have been fruitful results
[8], [10]. However, taking the system objective function as
the potential function means that the potential function equals
to the sum of all players’ utility functions (we refer to this
as the budget balance condition). This is a new type of
finite potential games, which has not yet been proposed and
studied. Hence, there are three innovative results, specifically:
1) the verification of budget-balanced potential network games
(BBPNGs); 2) algebraic and geometric expressions of budget-
balanced potential games (BBPGs); 3) a necessary and suffi-
cient condition for the utility design.
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The rest of this paper is organized as follows. Section
2 introduces the semi-tensor product of matrices. Section
3 discusses the verification of BBPNGs and algebraic and
geometric structures of BBPGs. Section 4 gives the utility
design method. Section 5 concludes the paper.

For statement ease, we first give some notations: (i) The
set of m× n real matrices is denoted by Mm×n. (ii) 1` is a
`−dimensional column vector with all entries equal to 1, and
0p×q is a p× q matrix with zero entries. (iii) Col(M): the set
of columns of M ∈Mm×n.

II. PRELIMINARIES

The semi-tensor product of matrices is defined as follows:
Definition 2.1: [4] Let M ∈ Mm×n, N ∈ Mp×q. The

semi-tensor product of matrices of M and N is defined as

M nN :=
(
M ⊗ It/n

) (
N ⊗ It/p

)
∈Mmt/n×qt/p,

where t = lcm(n, p) is the least common multiple of n and
p, and ⊗ is the Kronecker product.

Throughout this paper the default matrix product is the
semi-tensor product, that is AB := AnB.

Next, we consider the matrix expression of logical relations.
Let Dk := {1, 2, · · · , k} be a finite set with k logical variables,
in which the concrete number j is used to represent the j−th
element in the set. Define the vector form expression of a
logical variable j ∈ Dk as ~j := δjk ∈ ∆k. We identify j ∈ Dk
to δjk ∈ ∆k, i.e., j ∼ δjk, j = 1, 2, · · · , k. Here, δik is the
i−th column of identity matrix Ik, and ∆k := {δik | i =
1, 2, · · · , k} is the set of all columns.

Proposition 2.2: [4] For a function f :
∏n
i=1Dki → R,

there exists a unique Vf ∈ Rk with k = Πn
i=1ki, such that (in

vector form) we have

f(x1, · · · , xn) = Vf nni=1 ~xi, (1)

where xi ∈ Dki , i = 1, 2, · · · , n; nni=1~xi := ~x1 n ~x2 n · · ·n
~xn. Moreover, Vf is called the structure vector of f .

Example 2.3: Assume n = 2, k1 = k2 = 2, and D2 =
{1, 2}. Define a function f : D2×D2 → R as below: f(1, 1) =
a1, (1, 2) = a2, f(2, 1) = b1, f(2, 2) = b2. Then, Vf =
[a1, a2, b1, b2]. Let 1 ∼ ~1 = [1, 0]T, 2 ∼ ~2 = [0, 1]T. Then, it
follows from (1) that

f(1, 2) = Vf n ~x1 n ~x2 = Vf n [1, 0]T n [0, 1]T = a2.

III. BUDGET-BALANCED POTENTIAL NETWORK GAMES

This section introduces network games with multiple types
of players, and studies the algebraic and geometric properties
of BBPNGs.

A. Network Games with Multiple Types of Players
A (normal form non-cooperative) finite game G =

(N, (Si)i∈N , (ci)i∈N ) consists of three ingredents: N :=
{1, 2, · · · , n} is the set of finite players. Si := {1, 2, · · · , ki}
is the set of finite strategies of player i, i = 1, 2, · · · , n. A
strategy combination s = (s1, s2, · · · , sn) is called a strategy
profile, where si ∈ Si is the strategy that player i takes. Denote
by S :=

∏n
i=1 Si the set of strategy profiles. ci : S → R

is the utility function of player i, i = 1, 2, · · · , n. Denote
by G[n;k1,k2,··· ,kn] the set of all finite games with |N | = n,
|Si| = ki, i = 1, 2, · · · , n.

Denote the strategy profile of players other than player i as
s−i := {s1, · · · , si−1, si+1, · · · , sn} ∈ S−i =

∏
j∈N\{i} Sj .

With this notation, denote s = (si, s−i), and ci(s) =
ci(si, s−i).

An k-uniform hypergraph is a pair (V, E), where V =
{v1, v2, · · · , vn} is a finite set of n vertices (nodes), and
E ⊂ N ×N × · · ·N︸ ︷︷ ︸

n

is the set of hyperedges with each

hyperedge e ∈ E a finite set of containing k nodes.
In Fig. 1, we give an example of a 3−uniform hyper-
graph with V = {1, 2, 3, 4, 5} and E = {e1, e2, e3} =
{{v1, v2, v3}, {v2, v3, v4}, {v1, v4, v5}}.

Fig. 1. An example of a 3-uniform hypergraph

A network game with multiple types of players is repre-
sented by a quadruple G = (T, (N, E), g, (ci)i∈N ), where

1) T := {t1, t2, · · · , tm} is the set of finite types. Each
player belongs to a certain type. Denote by Ti the type
of player i. Depending on types, N can be divided into
m disjoint sets as below:

Ntj := {i ∈ N |Ti = tj}, j = 1, 2, · · · ,m.

2) (N, E) is an m−uniform hypergraph. E ⊂ Nt1 ×Nt2 ×
· · · × Ntm is the set of hyperedges with each player as
a node, and a hyperedge e ∈ E consists of m different
types of players.

3) g := (Ng, (S
g
j )j∈Ng

, (cgj )j∈Ng
) is the fundamental net-

work game (FNG). It is a finite m-player game, and a
player in FNG is actually a type. Then, we have Ng = T .
Assume players of the same type have the same number
of strategies, and denote by Sgj := {1, 2, · · · , ktj} the
strategy set of players of type tj . Denote by Sg the set of
strategy profiles in the FNG. A strategy profile s ∈ Sg is
expressed as s = (st1 , st2 , · · · , stm) with stj the strategy
of type tj . c

g
j : Sg → R is the utility function for type

tj .
Denote by G[n;m;kt1 ,··· ,ktm ] the set of network games with

multiple types of players where |N | = n, |T | = m, and
|Si| = kTi

, i = 1, 2, · · · , n. Let |Ntj | = nj , j = 1, 2, · · · ,m.
Without loss of generality, we assume and set

Nt1 := {1, 2, · · · , n1};
...
Ntm := {nm−1 + 1, nm−1 + 2, · · · , nm}.

Putting all edges that contain player i ∈ N together, we get

Ei := {e ∈ E|i ∈ e}, i = 1, 2, · · · , n.
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Assume player i plays the FNG on each e ∈ Ei with the same
strategy, respectively. Define the utility function of player i as
the sum of utilities gained in each FNG as below:

ci(s) =
∑
e∈Ei

cgTi
(si, se\{i}), i = 1, 2, · · · , n, (2)

where se\{i} is the strategy profile of those players in e \ {i}.

B. Verification of BBPNGs
Definition 3.1: [13] Let G = (N, (Si)i∈N , (ci)i∈N ) be a

finite game. If there exists a function p : S → R, such that for
every i ∈ N , every s−i ∈ S−i, and any si, s′i ∈ Si, we have

ci(si, s−i)− ci(s′i, s−i) = p(si, s−i)− p(s′i, s−i), (3)

then G is called an (exact) potential game, and the function p
is called an (exact) potential function.

Definition 3.2: Let G = (N, (Si)i∈N , (ci)i∈N ) be a finite
potential game and p : S → R be its potential function. If
there exists a constant c ∈ R, such that

p(s) =

n∑
i=1

ci(s) + c, ∀s ∈ S, (4)

then G is called a BBPG, and (4) is called the budget balance
condition. Denote by GBP[n;k1,k2,··· ,kn] the set of all BBPGs with
|N | = n, |Si| = ki, i = 1, 2, · · · , n.

Remark 3.3: In this paper, we consider the case where
c = 0 for the following reasons: 1) c = 0 means the
total welfare of the social network system is fully distributed
to all individuals with neither a surplus (positive c) nor a
“blank check” (negative c); 2) the value of c does not affect
the establishment of theoretical results since it is always
eliminated during the proof process.

A network game with multiple types of players is called
a potential network game if it is a potential game, and
further called a BBPNG if its potential function satisfies the
budget balance condition. Now, we discuss the relationship
between a BBPNG and its FNG in two steps to simplify the
verification of BBPNGs. First, consider the potential network
game and its FNG. Then, take the budget balance condition
into consideration.

For the verification of finite potential games, we have:
Theorem 3.4: [13] A game G = (N, (Si)i∈N , (ci)i∈N ) is

a potential one, if and only if, for every i, j ∈ N , every a ∈
S−{i,j}, and any xi, yi ∈ Si, xj , yj ∈ Sj , we have

ci(B)− ci(A) + cj(C)− cj(B)
+ ci(D)− ci(C) + cj(A)− cj(D) = 0,

(5)

where A = (xi, xj , a), B = (yi, xj , a), C = (yi, yj , a), D =
(xi, yj , a) see Figure 2.

Fig. 2. A closed path of length 4

The following result is obtained according to Theorem 3.4.
Theorem 3.5: A network game with multiple types of play-

ers is a potential network game, if and only if, its FNG is a
potential game.

Proof: For any two players i, j ∈ N , denote

Ei,j := Ei ∩ Ej ; Ei\j := Ei \ Ej ;
Ej\i := Ej \ Ei; e− := e \ {i, j}.

If Ei,j 6= ∅, it can be calculated that

ci(A) :=
∑
e∈Ei,j

cgTi
(xi, xj , xe−) +

∑
e∈Ei\j

cgTi
(xi, xe\{i}).

Similarly, we can obtain ci(B), ci(C), and ci(D). A straight-
forward computation gives

ci(B)− ci(A) + ci(D)− ci(C)
=

∑
e∈Ei,j

[cgTi
(xi, xj , xe−)− cgTi

(yi, xj , xe−)

+ cgTi
(yi, yj , xe−)− cgTi

(xi, yj , xe−)].

(6)

Similarly, for player j we have

cj(C)− cj(B) + cj(A)− cj(D)
=

∑
e∈Ei,j

[cgTj
(yi, yj , xe−)− cgTj

(yi, xj , xe−)

+ cgTj
(xi, xj , xe−)− cgTj

(xi, yj , xe−)].

(7)

(Necessity) Consider any hyperedge e = {i1, i2, · · · , im} ∈
E with Tij = tj , j = 1, 2, · · · ,m. For any two players
ip ∈ e and iq ∈ e, assume all players of the same type in
all hyperedges belonging to Eip

⋂
Eiq except for players ip

and iq choose the same strategy. Then,

xe\{ip,iq} = xe′\{ip,iq}, ∀ e, e′ ∈ Eip,iq . (8)

Inserting (8) into (6) and (7), respectively, we have

cip(B)− cip(A) + cip(D)− cip(C)
= |Eip,iq |[c

g
tp(xip , xiq , xe−)− cgtp(yip , xiq , xe−)

+ cgtp(yip , yiq , xe−)− cgtp(xip , yiq , xe−)];

ciq (C)− ciq (B) + ciq (A)− ciq (D)
= |Eip,iq |[c

g
tq (yip , yiq , xe−)− cgtq (yip , xiq , xe−)

+ cgtq (xip , xiq , xe−)− cgtq (xip , yiq , xe−)].

(9)

Substituting (9) into the left side of (5), we have

cgtp(B)− cgtp(A) + cgtq (C)− cgtq (B)

+ cgtp(D)− cgtp(C) + cgtq (A)− cgtq (D) = 0,

implying that the FNG is a potential game.
(Sufficiency) Since the FNG is a potential game, for any

two players i and j, we have

cgTi
(B)− cgTi

(A) + cgTj
(C)− cgTj

(B)

+ cgTi
(D)− cgTi

(C) + cgTj
(A)− cgTj

(D) = 0.
(10)

If Ei,j 6= ∅, then substituting (6) and (7) into the left side of
(5) and using (10) yields (5), showing that the network game
with multiple types of players is a potential game. Otherwise,
it can be calculated that

ci(A) :=
∑
e∈Ei

cgTi
(xi, x−e\{i}).

Similarly, we can calculate ci(B), ci(B), and ci(D). A
straightforward computation gives

ci(B)− ci(A) + ci(D)− ci(C) = 0. (11)
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Similarly, for player j, it can also be obtained that

cj(C)− cj(B) + cj(A)− cj(D) = 0. (12)

The conclusion follows immediately from (11) and (12). �
Corollary 3.6: The potential function of a potential network

game can be calculated as below:

p(s) =
∑
e∈E

pg(st1 , st2 , · · · , stm), (13)

where pg the potential function of the FNG, and stj is the
strategy of the player of type tj on the hyperedge e, j =
1, 2, · · · ,m.

Proof: Since the FNG is a potential game, for every i ∈ N,
every e ∈ Ei, and any si, s′i ∈ Si, we have

cgTi
(si, se\{i})−cgTi

(s′i, se\{i}) = pg(si, se\{i})−pg(s′i, se\{i}).

Using (13), it can be calculated that

p(si, s−i)− p(s′i, s−i)
=
∑
e∈Ei

[pg(si, se\{i})− pg(s′i, se\{i})]

=
∑
e∈Ei

[cgTi
(si, se\{i})− cgTi

(s′i, se\{i})]

= ci(si, s−i)− ci(s′i, s−i).

Hence, p is the potential function of a potential network game.
�

Now, we generalize Theorem 3.5 to the budget balance case.
Theorem 3.7: A network game with multiple types of play-

ers is a BBPNG, if and only if, the FNG is a BBPG.
Proof: Put players of the same type together, and denote as

Ntj := {ij1, i
j
2, · · · , ijnj

}, j = 1, 2, · · · ,m.

As the type of each player is unchanged, we have

N = ∪mj=1Ntj , (14)

where
Ntp ∩Ntq = ∅, if tp 6= tq.

Since each hyperedge contains m different types of players,
the following fact can be verified:

E = ∪nj

t=1Eijt , j = 1, 2, · · · ,m, (15)

where
Eijp ∩ Eijq = ∅, if p 6= q.

(Sufficiency) Since the FNG is a potential game, the net-
work game with multiple types of players is also a potential
game. According to Corollary 3.6, it can be calculated that

p(s) =
∑
e∈E

pg(st1 , st2 , · · · , stm)

=
∑
e∈E

m∑
j=1

cgtj (stj , se\{i∈e|Ti=tj})

=
m∑
j=1

∑
e∈E

cgtj (stj , se\{i∈e|Ti=tj}).

Further, using (14) and (15), we have

p(s) =
m∑
j=1

nj∑
t=1

∑
e∈E

i
j
t

cgtj (sijt
, se\{ijt}

)

=
m∑
j=1

nj∑
t=1

cijt
(sijt

, s−ijt
)

=
m∑
j=1

∑
i∈Ntj

ci(si, s−i)

=
∑
i∈N

ci(si, s−i),

implying that the network game with multiple types of players
is a BBPNG.

(Necessity) If the conclusion was not true, then there would
not exist a constant real-valued function d : Sm0 → R such that
the potential function of the FNG denoted by p : Sm0 → R
can be expressed as

p(st1 , · · · , stm) =

m∑
j=1

ctj (st1 , · · · , stm) + d(st1 , · · · , stm).

(16)
Consider strategy profiles that players of the same type take

the same strategy. Without loss of generality, assume

si := s∗tj ∈ S0, ∀ i ∈ Ntj .

Then, the strategy profile on each hyperedge is the same.
Denote it as s∗ = (s∗t1 , s

∗
t2 , · · · , s

∗
tm).

One the one hand, since the network game with multiple
types of players is a BBPG, according to Definition 3.2, it
can be calculated by (14) and (15) that

P (s) =
n∑
i=1

ci(si, s−i)

=
n∑
i=1

∑
e∈Ei

cgTi
(si, s−e\{i})

=
m∑
j=1

∑
i∈Ntj

∑
e∈Ei

cgtj (s∗)

= |E|
m∑
j=1

cgtj (s∗).

(17)

On the other hand, since the network game with multiple
types of players is a potential game, inserting (16) into (13),
we have

P (s) =
∑
e∈E

pg(s∗) = |E|[
m∑
j=1

cgtj (s∗) + d(s∗)]. (18)

Comparing (17) with (18), we obtain

d(s∗) = 0. (19)

Since s∗ ∈ Sm0 is arbitrary, d is a constant function, which
contracts with above assumption. �

C. Budget-Balanced Potential Games
In this subsection, we search for a basis of GBP[n;k1,··· ,kn].

For this, we need to prove that GBP[n;k1,··· ,kn] is a subspace of
G[n;k1,··· ,kn] by verifying that GBP[n;k1,··· ,kn] remains closed with
respect to the addition and multiplication operations defined
on G[n;k1,··· ,kn]. The proof is straightforward, and hence, is
omitted here.
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In the following, we give a survey for the vector space
structure of finite games. Consider a finite game G =
(N, (Si)i∈N , (ci)i∈N ) ∈ G[n;k1,··· ,kn]. Express j ∈ Si in its
vector form, i.e., δjki . Then, according to Proposition 2.2, there
is a unique row vector V ci ∈ Rk, such that ci can be expressed
as

ci(s1, · · · , sn) = V ci nnj=1 ~sj , i = 1, · · · , n. (20)

Putting all V ci , i = 1, · · · , n, together, we define

VG :=
[
V c1 , V

2
c , · · · , V cn

]
∈ Rnk,

which is called the structure vector of G. Regarding a finite
game as a point in Rnk, it can be proved that G[n;k1,··· ,kn] ∼=
Rnk. Therefore, the analysis of finite games can be put into a
linear algebraic frame.

The following lemmas are given to show the relationship
between the algebraic structure of BBPGs and that of non-
strategy games [5].

Lemma 3.8: A finite game G = (N, (Si)i∈N , (ci)i∈N ) is a
BBPG, if and only if, for every i ∈ N , every sj ∈ Sj , every
si,j ∈ S−{i,j}, and any si, s′i ∈ Si, we have∑

j 6=i

cj(sj , si, s−{i,j}) =
∑
j 6=i

cj(sj , s
′
i, s−{i,j}). (21)

Here, s−{i,j} is the strategy profile of the players except for
players i and j, and cj(sj , si, s−{i,j}) is the utility of player
j taking strategy sj in the case of player i taking strategy si
and other players taking strategy profile s−{i,j}.

Proof: For every i ∈ N , every s−i ∈ S−i, and any si ∈ Si,
p(s) in (4) can be expressed as

p(si, s−i) = ci(si, s−i) +
∑
j 6=i

cj(sj , si, s−{i,j}). (22)

Substituting (22) into (3) yields the necessity. The sufficiency
is obtained by adding (ci(si, s−i) + ci(s

′
i, s−i)) to both side

of (21) and using (22). �
For any finite game G = (N, (Si)i∈N , (ci)i∈N ), define a

corresponding game G̃ = (N, (Si)i∈N , (hi)i∈N ), where for
every i ∈ N , every s−i ∈ S−i,

hi(si, s−i) =
∑
j 6=i

cj(sj , si, s−{i,j}), ∀ si ∈ Si. (23)

Then, the following result can be obtained, which is an
immediate consequence of Lemma 3.8.

Lemma 3.9: A finite game G = (N, (Si)i∈N , (ci)i∈N ) is
a BBPG, if and only if, its corresponding game G̃ is a non-
strategy game. That is, for every i ∈ N and every s−i ∈ S−i,

hi(si, s−i) = hi(s
′
i, s−i), ∀ si, s′i ∈ Si.

According to Proposition 2.2, hi and ci can be expressed
in vector forms, respectively, as

ci(si, s−i) = V ci nnt=1 ~st, i = 1, 2, · · · , n;

hi(si, s−i) = V hi nnt=1 ~st, i = 1, 2, · · · , n.

Construct a matrix Q ∈Mnk×nk with k =
∏n
i=1 ki as below:

Q =


0k×k Ik×k Ik×k ··· Ik×k

Ik×k 0k×k Ik×k ··· Ik×k

Ik×k Ik×k 0k×k ··· Ik×k

...
...

...
. . .

...
Ik×k Ik×k Ik×k ··· 0k×k

 .

Using vector forms of ci and hi, (23) can be expressed in
vector form as

V hi nnt=1 ~st =
∑
j 6=i

(V cj nnt=1 ~st)

= (
∑
j 6=i

V cj ) nnt=1 ~st

= [V c1 , · · · , V cn ]QT
i nnt=1 ~st,

(24)

where Qi is i − th row block of Q. Since s1, s2, · · · , sn are
arbitrary, the following matrix equation holds from (24):

V hi = [V c1 , · · · , V cn ]QT
i .

Putting all V hi , i = 1, 2, · · · , n, together and taking trans-
pose, we obtain the following liner system:

[V h1 , · · · , V hn ]T = Q[V c1 , · · · , V cn ]T.

It can be verified that Q is invertible, and

Q−1 =


−n−2

n−1 Ik
1

n−1 Ik ··· 1
n−1 Ik

1
n−1 Ik −

n−2
n−1 Ik ···

1
n−1 Ik

...
...

. . .
...

1
n−1 Ik

1
n−1 Ik ··· −n−2

n−1 Ik

 .
Hence, we have

V T
G = Q−1V T

G̃
. (25)

(25) shows that the subspace of BBPGs is isomorphic to
that of non-strategy games. Results about spatial structure of
non-strategy games have been given in [5]. Denote

Ei = I∏i−1
t=1 kt

⊗1ki⊗I∏n
t=i+1 kt

∈Mk× k
ki

, i = 1, 2, · · · , n.

Particularly, we specify, when i = 1, I∏0
t=1 kt

= 1; when
i = n, I∏n

t=i+1 kt
= 1. Define

BN =


E1 0

k× k
k2

··· 0
k× k

kn

0
k× k

k1

E2 ··· 0
k× k

kn

...
...

. . .
...

0
k× k

k1

0
k× k

k2

··· En

 ∈Mnk×
n∑

i=1

k
ki

.

Denote by N the subspace of non-strategy games. Then, we

have dim(N ) =
n∑
i=1

k
ki
, and N ∈ Span(BN ), which has

Col(BN ) as its basis. Applying these two results to (25), we
obtain the following result.

Theorem 3.10: 1) The dimension of subspace of
GBP[n;k1,··· ,kn] is

dim(GBP[n;k1,··· ,kn]) =

n∑
i=1

k

ki
.

2) The subspace of GBP[n;k1,··· ,kn] is

GBP[n;k1,··· ,kn] ∈ Span(Ψ),

where

Ψ := Q−1BN =


−n−2

n−1E1
1

n−1E2 ··· 1
n−1En

1
n−1E1 −n−2

n−1E2 ··· 1
n−1En

...
...

. . .
...

1
n−1E1

1
n−1E2 ··· −n−2

n−1En

 .
(26)

Moreover, the subspace of GBP[n;k1,··· ,kn] has Col(Ψ) as a
basis.
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IV. OPTIMIZATION OF MULTI-AGENT SYSTEMS VIA
DESIGNED UTILITIES

A multi-agent system with multiple types of agents is a
tuple

∏
= (T, (Si)i∈N , (N, E), (fj)j∈T ,W ). Here, N :=

{1, 2, · · · , n} is the set of finite agents, and every agent i
belongs to a certain type denoted by Ti. T := {t1, t2, · · · , tm}
is the set of all types. Given that agents of the same type tend
to have the same performance, we assume the cardinalities
of their strategy sets are the same, and denote by Stj =
{1, 2, · · · , kti} the strategy set of players of type tj , j =
1, 2, · · · ,m. (N, E) is an m−uniform hypergraph with each
hyperedge including m different types of agents. Only agents
on the same hyperedge can communicate, and each agent
obtains some utility after the communication. The specific
utility of players of type j is described by fj , j = 1, 2, · · · ,m,
which are called type-based utility functions. Assume an agent
that belongs to more than one hyperedge communicates on
each hyperedge, respectively, with the same strategy. A system
objective function W : S → R is preassigned, representing
the overall utility of the whole network. Our purpose is to
minimize W , namely, to find a profile s∗ ∈ S, such that

W (s∗) = min
s∈S

W (s).

We model the multi-agent system with multiple types of
agents as a network game with multiple types of players by
specifying the FNG and the utility functions of players. The
FNG g := (Ng, (S

g
j )j∈Ng

, (cgj )j∈Ng
) is defined as below:

1) Ng = T := {t1, t2, · · · , tm};
2) Sgj = Stj := {1, 2, · · · , ktj}, j = 1, 2, · · · ,m;
3) cgj := fj , j = 1, 2, · · · ,m.

The utility function of player i is defined as below:

ci(si, s−i) =
∑
e∈Ei

cgTi
(si, se\{i}), i = 1, 2, · · · , n. (27)

Then, for the system objective function W (s) we have:

W (s) =

n∑
i=1

ci(s), ∀ s ∈ S.

The fundamental idea of the technique developed in this
paper is: choosing suitable type-based utility functions such
that the multi-agent system with multiple types of agents
becomes a BBPNG with W (s) as its potential function.

In the following, we construct a linear system which turns
the problem of designing suitable type-based utility functions
into checking whether a solution of this linear system exists.

First, we express (13) in its algebraic form. Consider a
hyperedge e = {it1 , it2 , · · · , itm} with itj the player of type
tj , j = 1, 2, · · · ,m. For the right side of (13), pg can be
expressed in vector form as:

pg(st1 , st2 , · · · , stm) = Vpg nmj=1 ~stj . (28)

For the left side of (13), p can be expressed in vector form
as:

p(s1, s2, · · · , sn) = Vp nni=1 ~si. (29)

By comparing (28) and (29), it can be found that there are
m strategies multiplied in (28), while n strategies in (29). We

define a deleting operator as below to convert the vector form
in (28) into that in (29):

Ee = ⊗mj=1Γj , j = 1, 2, · · · , t, (30)

where

Γj =

{
Iκ, j ∈ e;
1T
κ , j /∈ e.

Then, the following properties can be verified:

Ee nni=1 ~si = nmj=1~stj . (31)

Substituting (28) and (29) into (13), by (31) we obtain,

Vp nni=1 ~si =
∑
e∈E

Vpg nmj=1 ~stj

=
∑
e∈E

VpgEe nni=1 ~si

= Vpg (
∑
e∈E

Ee) nni=1 ~si.

Denote
E =

∑
e∈E

Ee.

Since si, i = 1, 2, · · · , n, are arbitrary, we have

Vp = VpgE. (32)

Theorem 4.1: Let W (s) be the given system objective
function of a multi-agent system with multiple types of agents.
Type-based utility functions can be found such that the multi-
agent system becomes a BBPNG with W as its potential
function, if and only if, the following linear systems has a
solution for unknown ζ:

V T
w = ET(1T

n ⊗ Iκn)Ψζ, (33)

where Ψ is defined in (26). Moreover, type-based utility
functions can be designed as Ψζ.

Proof: On the one hand, according to Theorem 3.10, we
have, for unknown ζ,

V T
g = Ψζ. (34)

On the other hand, according to Definition 3.2, it can be
checked that

Vpg =
m∑
j=1

Vtj = Vg(1n ⊗ Iκn). (35)

Inserting (35) into (32), we have

Vp = Vg(1n ⊗ Iκn)E. (36)

Substituting (34) into (36), replacing Vp with Vw, and taking
transpose, we obtain (33). The design method of type-based
utility functions follows from (34). �

Example 4.2: Consider a multi-agent system with 5 agents
and 3 types. Assume |Si| = 2, i = 1, · · · , 5, T = {t1 :=
•, t2 := N, t3 := �}, the hypergraph is as shown in Figure 3,
and the system objective function W is as given in Table I.

Fig. 3. 3-uniform hypergraph
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TABLE I
SYSTEM OBJECTIVE FUNCTION W :

s 11111 11112 11121 11122 11211 11212 11221
W 18 17 16 15 24 24.5 25
s 11222 12111 12112 12121 12122 12211 12212
W 25.5 26 23.5 22 22 26 26
s 12221 12222 21111 21112 21121 21122 21211
W 26.5 26.5 22 21 19.5 18.5 25
s 21212 21221 21222 22111 22112 22121 22122
W 25.5 25.5 26 30 28.5 27 25.5
s 22211 22212 22221 22222
W 27 27 27 27

Using (30), we have

Ee1 = I2 ⊗ 12 ⊗ I2 ⊗ I2 ⊗ 12;
Ee2 = 12 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ 12;
Ee3 = 12 ⊗ I2 ⊗ I2 ⊗ 12 ⊗ I2.

Then,

E = Ee1 + Ee2 + Ee3

=


3 2 1 0 0 0 0 0 1 1 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 2 1 0 0 0 0 0 1 1 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 3 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 3 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 1 1 0 0 0 0 0 1 2 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 1 1 0 0 0 0 0 1 2 3

 .
Using (26), it can be calculated that

Ψ =
[−A B C
A −B C
A B −C

]
,

where
A = 1

2 (12 ⊗ I4);
B = 1

2 (I2 ⊗ 12 ⊗ I2);
C = 1

2 (I4 ⊗ 12).

Inserting E, Ψ and W (s) into (33), it can be verified that (33)
has solutions. For instance, one of the solutions is

ζ = [4, 3, 5, 6, 5, 4, 8, 6, 3, 6, 8, 5].

According to Theorem 4.1, we obtain the type-based utility
functions shown in Table II.

TABLE II
UTILITY MATRIX:

c\s 111 112 121 122 211 212 221 222
cgt1 (•) 2 2 3 1.5 6 5.5 4 2
cgt2 (N) 1 1 3 4.5 2 2.5 1 3
cgt3 (�) 3 2 2 2.5 2 0.5 4 4

V. CONCLUSION

Optimization of the multi-agent system with multiple types
of agents has been studied via potential game approach. First,
the verification of BBPNGs has been simplified to verify
whether the FNG is a BBPG. Then, the algebraic expression of
BBPGs has been given, showing that the subspace of BBPGs is
isomorphic to that of non-strategic games. By resorting to the
structure of non-strategic games, a basis of subspace of BBPGs
has been obtained as well as the space dimension. Finally,
by expressing the potential function of a BBPNG in matrix
form, a linear system has been presented, which transforms

the problem of designing type-based utility functions into the
existence problem of solutions of this linear system.

The cardinality of all hyperedges and that of the strategy sets
of the players of the same type are both assumed to be the
same in this paper. Moderately relaxing these two conditions
will lead to new network game models, such as that with
multiple FNGs. Then, the assumptions in the proof of main
results no longer hold, which calls for new research methods
and techniques.
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